Computing the likelihood of sequence segmentation under Markov modelling
نویسنده
چکیده
I tackle the problem of partitioning a sequence into homogeneous segments, where homogeneity is defined by a set of Markov models. The problem is to study the likelihood that a sequence is divided into a given number of segments. Here, the moments of this likelihood are computed through an efficient algorithm. Unlike methods involving Hidden Markov Models, this algorithm does not require probability transitions between the models. Among many possible usages of the likelihood, I present a maximum a posteriori probability criterion to predict the number of homogeneous segments into which a sequence can be divided, and an application of this method to find CpG islands.
منابع مشابه
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملSCHEFFLER AND ODOBEZ: ADAPTIVE COLOUR MODELLING AND SEGMENTATION 1 Joint Adaptive Colour Modelling and Skin, Hair and Clothing Segmentation Using Coherent Probabilistic Index Maps
We address the joint segmentation of regions around faces into different classes — skin, hair, clothing and background — and the learning of their respective colour models. To this end, we adopt a Bayesian framework with two main elements. First, the modelling and learning of prior beliefs over class colour distributions of different kinds, viz. discrete distributions for background and clothin...
متن کاملAlgorithms for Computing Limit distributions of Oscillating Systems with Finite Capacity
We address the batch arrival systems with finite capacity under partial batch acceptance strategy where service times or rates oscillate between two forms according to the evolution of the number of customers in the system. Applying the theory of Markov regenerative processes and resorting to Markov chain embedding, we present a new algorithm for computing limit distributions of the number cus...
متن کامل